Quantifying aerosol mixing state with entropy and diversity measures
نویسنده
چکیده
This paper presents the first quantitative metric for aerosol population mixing state, defined as the distribution of per-particle chemical species composition. This new metric, the mixing state index χ , is an affine ratio of the average per-particle species diversity Dα and the bulk population species diversity Dγ , both of which are based on information-theoretic entropy measures. The mixing state index χ enables the first rigorous definition of the spectrum of mixing states from so-called external mixture to internal mixture, which is significant for aerosol climate impacts, including aerosol optical properties and cloud condensation nuclei activity. We illustrate the usefulness of this new mixing state framework with model results from the stochastic particle-resolved model PartMC-MOSAIC. These results demonstrate how the mixing state metrics evolve with time for several archetypal cases, each of which isolates a specific process such as coagulation, emission, or condensation. Further, we present an analysis of the mixing state evolution for a complex urban plume case, for which these processes occur simultaneously. We additionally derive theoretical properties of the mixing state index and present a family of generalized mixing state indexes that vary in the importance assigned to low-mass-fraction species.
منابع مشابه
Effect of convective stretching and folding on aerosol mixing deep in the lung, assessed by approximate entropy.
There is a surprisingly substantial amount of aerosol mixing and deposition deep in the lung, which cannot be explained by classic transport mechanisms such as streamline crossing, inertial impaction, or gravitational sedimentation with reversible acinar flow. Mixing associated with "stretch and fold" convective flow patterns can, however, be a potent source of transport. We show such patterns ...
متن کاملMultivariate Quadrature for Representing Cloud Condensation Nuclei Activity of Aerosol Populations
Atmospheric aerosol is comprised of distinct multicomponent particles that are continuously modified as they are transported in the atmosphere. Resolving variability in particle physical and chemical properties requires tracking high-dimensional probability density functions, which is not practical in large-scale atmospheric simulations. Reduced representations of atmospheric aerosols are neede...
متن کاملQuantifying Disorder through Conditional Entropy: An Application to Fluid Mixing
In this paper, we present a method to quantify the extent of disorder in a system by using conditional entropies. Our approach is especially useful when other global, or mean field, measures of disorder fail. The method is equally suited for both continuum and lattice models, and it can be made rigorous for the latter. We apply it to mixing and demixing in multicomponent fluid membranes, and sh...
متن کاملThe Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.
Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow...
متن کاملEntropy vs. Majorization: What Determines Complexity?
The evolution of a microcanonical statistical ensemble of states of isolated systems from order to disorder as determined by increasing entropy, is compared to an alternative evolution that is determined by mixing character. The fact that the partitions of an integer N are in one-to-one correspondence with macrostates for N distinguishable objects is noted. Orders for integer partitions are giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013